

RESEARCH REPORT

Executive Summary:

Microgrids

Commercial/Industrial, Community/Utility, Campus/Institutional, Military, Remote, Grid-Tied Utility Distribution, and Direct Current Microgrids: Global Market Analysis and Forecasts

NOTE: This document is a free excerpt of a larger report. If you are interested in purchasing the full report, please contact Navigant Research at research-sales@navigant.com.

Published 4Q 2013

Peter Asmus

Principal Research Analyst

Mackinnon Lawrence

Principal Research Analyst

Section 1

EXECUTIVE SUMMARY

1.1 Global Survey of Today's Microgrid Market

It is now 4 years since Navigant Research took its first comprehensive look at the microgrid market. Until recently, the vast majority of microgrids coming online, whether grid-connected or off-grid, have been pilot projects or research and development (R&D) experiments. Today the industry is moving into the next phase of project development, focusing on how to develop projects on fully commercial terms. It appears that the main technology components have made significant headway. The key to future growth now rests with greater creativity in both the public policy and business model arenas.

This report identifies nine different business models for microgrids. It also takes a deep dive into the market in North America, which currently has captured over half of all vendor revenue activity. The increasing frequency of severe weather is prompting utilities in the United States and around the world to reconsider their historic opposition to customer-owned microgrids that can disconnect from the larger grid and island, allowing critical mission functions to stay up and running. Yet, utilities continue to worry about how a proliferation of customer-owned microgrids might complicate their job and perhaps erode their traditional revenue base. Should regulators instead allow utilities to build, own, or control these microgrids in some sort of coordinated, enterprisewide fashion?

Although a comprehensive suite of policies necessary to stimulate wider microgrid deployments has yet to be articulated by any single government, this report presents a series of maps of incentives that help build the business case for microgrids in the United States, the world's leading microgrid market. These incentives range from the expansion of net metering for distributed renewables to natural gas utility revenue decoupling.

1.2 Report Scope

The microgrid market has clearly undergone an evolution. While this report continues to break out and forecast the market according to the same five segments that have been widely adopted throughout the industry, Navigant Research has sliced up the market into new subsegments. The analysis in this report focuses on two specific subsegments – grid-tied utility distribution microgrids (UDMs) and direct current (DC) microgrids – that are attracting increased market attention.

The primary microgrid segments that have been traditionally forecast in terms of capacity and revenue by Navigant Research are as follows:

- » Commercial/industrial (C/I) microgrids: This segment is quickly maturing, especially in North America.
- » Community/utility microgrids: Europe leads this segment, with Denmark's high penetration of distributed wind requiring aggregation networks that represent over 80% of all microgrid activity there.
- » **Campus/institutional microgrids:** The typical focus of these microgrids is to aggregate existing onsite generation with multiple loads that are co-located in a campus setting.
- » Military microgrids: The focus of these microgrids is security, both cyber and physical.
- Remote microgrids: These microgrids never connect to a larger grid and, therefore, operate in island mode on a 24/7 basis.

The two new subsegments that are forecast in this report are:

- » Grid-tied UDMs: A subset of the community/utility segment, these microgrids face the largest regulatory barriers, but could lead to the largest-scale deployments over the long term.
- » DC microgrids: This subsegment overlaps with some of the others profiled in this report, as it encompasses both grid-tied and remote systems and is a technology rather than an application approach to microgrid segmentation.

In addition, this report offers a more granular regional perspective on microgrid development, dividing the previous Rest of World (ROW) geographical segment into Latin America and the Middle East & Africa. Moving beyond a traditional regional approach to market characterization, this report also breaks new ground in identifying the world's top 10 markets outside of the United States. Navigant Research developed a base scenario for each of these 10 countries, along with corresponding vendor revenue. Since the United States is such a dominant player in the global market, this report also segments the top five U.S. state markets, ranked as per current online, under development, and planned capacity according to data from Navigant Research's global database. These U.S. state forecasts focus on a base scenario for both capacity and vendor revenue.

This report identifies nine different business models being deployed to build microgrids today. It also provides profiles of 18 companies, with three tables highlighting other leading utilities, grid infrastructure providers, and selected purveyors of "nuts and bolts" hardware solutions that can tie together the necessary software needed to optimize distributed energy resources. Furthermore, case studies of a state government microgrid deployment initiative and both a remote island and a grid-tied utility distribution microgrid are presented to illustrate new forms of policy support and real world applications of microgrid-enabling technologies.

1.3 Market Forecasts

2013

According to the base scenario, annual capacity is expected to increase from 685 MW in 2013 to more than 4 GW by 2020, a compound annual growth rate (CAGR) of 29.3%. As can be seen in Chart 1.1, North America will maintain its leadership role over the 7-year forecast period. The Asia Pacific region will gradually increase market share over time, with a CAGR of 33.9% for microgrid capacity. Navigant Research believes that while North America dominates the microgrid market today and through 2020, the Asia Pacific region will likely emerge as the global leader for microgrid deployments by 2030 or 2035 due to the huge need for power for growing populations not served by traditional grid infrastructure. Europe is, relatively speaking, a laggard on microgrids because its preferred aggregation and optimization platform is the virtual power plant (described later in this report). The region's grid reliability is far superior to that in North America, limiting the appeal of islanding capability.

2016

2017

Chart 1.1 Annual Total Microgrid Capacity by Region, Base Scenario, World Markets: 2013-2020

(Source: Navigant Research)

2019

2018

2014

2015

2020

Section 8 Table of Contents

Sec	tion 1		1
Exe	cutive	Summary	1
1	.1	Global Survey of Today's Microgrid Market	1
1	.2	Report Scope	1
1	.3	Market Forecasts	3
Sec	tion 2		4
Maı	ket Is:	sues	4
2	2.1	Microgrids: Why the Hype?	4
2	2.2	What Is a Microgrid?	5
	2.2.1	Definition	5
	2.2.2	Microgrid Segments	6
	2.2.3	Microgrid versus Smart Grid	7
	2.2.4	Microgrid versus Virtual Power Plant	9
2	2.3	Moving from Pilot Projects to Commercial Business Models	10
2	2.4	Business Case for Grid-Tied Microgrids	10
2	2.5	Business Case for Remote Microgrids	12
2	2.6	Current Market Opportunities	12
	2.6.1	Shortcomings of the Status Quo Power Grid	12
	2.6.2	Premium Power for a Digital Economy	13
	2.6.3	Global Climate Change and Natural Disasters	15
	2.6.4	Higher Penetrations of Distributed Renewables	15
	2.6.5	Emerging Organized Markets for Grid Ancillary Services	16
	2.6.6	Universal Energy Access for the Bottom of the Pyramid	17

	2.6.7	Physical and Cyber Security for Military Operations	18
2.	7 Imp	plementation Issues	18
	2.7.1	Historic Anti-Islanding Bias of Incumbent Utilities	18
	2.7.2	Need for New Utility Business Models	19
	2.7.3	Maps of Opportunity (but Lack of Coordinated Policy Incentives)	20
	2.7.3.	1 Feed-in Tariffs	22
	2.7.3.	2 Renewable Portfolio Standards	23
	2.7.3.	Net Metering	23
	2.7.3.	4 Third-Party Power Purchase Agreements	26
	2.7.3.	5 Energy Storage Subsidies	27
	2.7.3.	6 Utility Revenue Decoupling	27
	2.7.4	Microgrid Governance	28
	2.7.4.	1 Case Study: Connecticut	29
	2.7.5	Plug-and-Play Offerings Limited	30
	2.7.6	What Is the Best Microgrid Business Model?	31
	2.7.6.	1 Facility Owner Financing and Maintenance	31
	2.7.6.	2 Utility Rate Base	32
	2.7.6.	3 Pure Component Sales	32
	2.7.6.	4 Networking Control Service Agreements	32
	2.7.6.	5 Government Energy Service Contracts	33
	2.7.6.	6 Power Purchase Agreements	33
	2.7.6.	7 Non-Synchronous Direct Current	34
	2.7.6.	8 Operations and Maintenance Contracts	34
	2.7.6.	9 Pay as You Go	35

Section 3		36
Technology	r Issues	36
3.1 N	Aicrogrids Aggregate and Optimize DER	36
3.2 N	Nicrogrid Components and Enabling Technologies	37
3.2.1	Fossil Distributed Generation	37
3.2.2	Inverter-Based Distributed Generation	39
3.2.3	Multiple Loads	39
3.2.4	Advanced Energy Storage	40
3.2.5	Point of Common Coupling	41
3.2.6	Microgrid System Control	42
3.2.	6.1 Competing Controls Approaches	43
3.2.	6.2 Inverter-Based Controls	44
3.2.	6.3 Open and Distributed Platforms	45
3.3 N	licrogrid Application Technology Rules of Thumb	46
3.3.1	Grid-Tied Microgrids	47
3.3.	1.1 Case Study: PowerStream Utility Distribution Microgrid	47
3.3.2	Remote Microgrids	49
3.3.3	High Penetration Renewable Energy Microgrids	50
3.3.	3.1 Case Study: Graciosa Island	51
3.3.4	Economic Optimization Microgrids	52
3.3.5	Cyber and Physical Security Microgrids	53
3.3.6	AC versus DC Grid Architectures	54
3.4 T	he Evolution of Microgrid Standards	55
3.4.1	Safety, Islanding, and Energy Storage Standards	55

	3.4.1.1	UL Standards	.55
	3.4.1.2	2 IEEE Standards	.55
	3.4.1.3	B Distribution Grid Integration Standards	.56
Section	n 4		.57
Key Ind	dustry l	Players	.57
4.1	Ove	erview	.57
4.2	Lea	ding Electric Utilities	.57
4.	.2.1	Consolidated Edison	.57
4.	.2.2	DONG Energy	.58
4.	.2.3	San Diego Gas & Electric	.59
4.	.2.4	Other Utility Players	.60
4.3	Grio	d Infrastructure Vendors	.61
4.	.3.1	Alstom Grid	.61
4.	.3.2	Schneider Electric	.62
4.	.3.3	Siemens AG	.63
4.	.3.4	Other Grid Infrastructure Vendors	.64
4.4	Mic	rogrid Integrators/Developers	.64
4.	.4.1	Chevron Energy Solutions	.65
4.	.4.2	Leidos (formerly SAIC)	.66
4.	.4.3	Optimal Power Solutions	.67
4.	.4.4	S&C Electric Company	.67
4.5	Gre	en Building Systems Integrators	.68
4.	.5.1	Honeywell	.68
4.	.5.2	Johnson Controls, Inc.	.68
4.6	Con	nponents and Business Model Innovators	.69

4.6.1	Bloom Energy	69
4.6.2	Sunverge Energy	70
4.7 Th	ree Leading Software Providers	70
4.7.1	Blue Pillar	70
4.7.2	Power Analytics	71
4.7.3	Viridity Energy	71
4.8 Le	ading "Nuts and Bolts" Hardware Providers	72
4.9 De	fense Industry Specialists	72
4.9.1	Earl Energy	72
Section 5		74
Market Forec	asts	74
5.1 Mi	crogrid Market: Exponential Growth	74
5.2 Th	ree-Scenario Forecasts	75
5.2.1	Capacity Methodology	76
5.2.2	Vendor Revenue Methodology	76
5.3 Mi	crogrid Market Overview: 2013	77
5.3.1	North America: Clear Global Leader	79
5.3.1.	1 Top Five U.S. States	80
5.4 To	p 10 Non-U.S. Countries	81
5.5 Re	gional Dynamics	85
5.5.1	Europe	85
5.5.2	Asia Pacific	86
5.5.3	Latin America	86
5.5.4	Middle East & Africa	86
5.6 Ne	w Subsegment Highlights	86

5.6.1	Grid-Tied Utility Distribution Microgrids	86
5.6.2	DC Microgrids	88
5.7	Conclusions and Recommendations	90
Section 6.		91
Company I	Directory	91
Section 7.		94
Acronym a	and Abbreviation List	94
Section 8.		99
Table of C	Contents	99
Section 9.		105
Table of C	harts and Figures	105
Section 10)	108
Scope of S	Study	108
Sources a	nd Methodology	108
Notes		109

Section 9

TABLE OF CHARTS AND FIGURES

Chart 1.1	Annual Total Microgrid Capacity by Region, Base Scenario, World Markets: 2013-2020	3
Chart 2.1	Annual Total Microgrid Capacity by Segment, World Markets: 4Q 2013	6
Chart 3.1	Annual Microgrid CHP Vendor Revenue by Region, Base Scenario, World Markets: 2012-2018	38
Chart 3.2	Annual Microgrid Solar PV Vendor Revenue by Region, Base Scenario, World Markets: 2012-2018	39
Chart 5.1	Annual Total Microgrid Capacity by Scenario, World Markets: 2013-2020	77
Chart 5.2	Annual Total Microgrid Vendor Revenue by Scenario, World Markets: 2013-2020	78
Chart 5.3	Annual Total Microgrid Capacity by Segment, Base Scenario, North America: 2013-2020	79
Chart 5.4	Annual Microgrid Capacity by Top Five States, Base Scenario, United States: 2013-2020	80
Chart 5.5	Annual Microgrid Vendor Revenue by Top Five States, Base Scenario, United States: 2013-2020	81
Chart 5.6	Annual Grid-Tied Microgrid Capacity by Top Five Non-U.S. Countries, Base Scenario, World Markets: 2013-2020	82
Chart 5.7	Annual Remote Microgrid Capacity by Top Five Non-U.S. Countries, Base Scenario, World Marke	
Chart 5.8	Annual Total Microgrid Vendor Revenue by Top 10 Non-U.S. Countries, Base Scenario, World Markets: 2013-2020	84
Chart 5.9	Annual Total Microgrid Vendor Revenue by Region, Base Scenario, World Markets: 2013-2020	85
Chart 5.10	Annual Grid-Tied Utility Distribution Microgrid Capacity by Region, Base Scenario, World Markets: 2013-2020	
Chart 5.11	Annual Grid-Tied Utility Distribution Microgrid Vendor Revenue by Region, Base Scenario, World Markets: 2013-2020	88
Chart 5.12	Annual DC Microgrid Capacity by Region, Base Scenario, World Markets: 2013-2020	89
Chart 5.13	Annual DC Microgrid Vendor Revenue by Region, Base Scenario, World Markets: 2013-2020	90

Figure 2.1	Centralized vs. Distributed Business Models for Power	5
Figure 2.2	Customer-Grid Evolution of Relationships via Microgrids	8
Figure 2.3	Microgrid Economic Capabilities Matrix per Internal Technology and External Markets	11
Figure 2.4	Grid Reliability Index, North America: 1992-2011	13
Figure 2.5	Today's Bidirectional and Increasingly Complex Power System	14
Figure 2.6	Shares of Population without Access to Modern Energy	17
Figure 2.7	FITs Driving Renewable Growth in Europe	22
Figure 2.8	RPS States in the United States with Solar or Distributed Generation Set-Asides	23
Figure 2.9	U.S. States with Net Metering	24
Figure 2.10	Ranking of U.S. States per Net Metering and Utility Interconnection Policies	25
Figure 2.11	Third-Party Solar PPA States	26
Figure 2.12	Electricity Utility Rate Decoupling, U.S. States	27
Figure 2.13	Natural Gas Utility Rate Decoupling, U.S. States	28
Figure 2.14	Approved Sites (in Yellow) for Connecticut Microgrids Funded by DEEP	30
Figure 2.15	Energy Solution Bundle Blended PPA Model	34
Figure 3.1	Microgrid Topology and Components	37
Figure 3.2	Battery Storage Applications for Microgrids	41
Figure 3.3	Matrix of Microgrid Grid Integration & Technical Complexity	43
Figure 3.4	Microgrid Application Triangle: Reliability, Fuel Savings, and Reduced Emissions	46
Figure 3.5	PowerStream Citiview Project Diagram	48
Figure 3.6	Levelized Cost of Energy for 100% Renewable Penetration Microgrids	51
Figure 3.7	Portugal's Graciosa Island Microgrid	52
Figure 3.8	Private Shipyard 11 MW CHP Microgrid Savings over 15 Years	53
Figure 4.1	Theoretical 500 MW Microgrid Scenario for Con Edison	58
Figure 4.2	Borrego Springs Remote Geographical Topology	60

Figure 4.3	Siemens DBOOM Microgrid Offering	63
Figure 4.4	Microgrid as Full Infrastructure Delivery Service Platform	66
Figure 5.1	Fisher-Pry S-Curve for Microgrids	74
Table 2.1	Microgrids vs. Virtual Power Plants	g
Table 2.2	SWOT Analysis for Grid-Tied Microgrids	11
Table 2.3	SWOT Analysis for Remote Microgrids	12
Table 4.1	Five Other Leading Utilities Active in Microgrid Market	61
Table 4.2	Five Other Leading Grid Infrastructure Vendors	64
Table 4.3	Five Leading Nuts & Bolts Hardware & Middleware Providers	72

Section 10 Scope of Study

Navigant Research has prepared this report to provide participants at all levels of the microgrid market, including utilities, project developers, hardware and software vendors, and public and private sector funders, with forecasts for the capacity and revenue associated with five major microgrid segments and two new subsegments (grid-tied utility distribution microgrids, or UDMs, and DC microgrids). The study's major objective is to assess the market size and anticipated growth of overall vendor revenue for both grid-tied and remote off-grid microgrids throughout the world. Five major global regions – North America, Europe, Asia Pacific, Latin America, and the Middle East & Africa – are included. The forecast extends through 2020 and is broken out according to three different scenarios: conservative, base, and aggressive.

The report's purpose is not to provide an exhaustive technical assessment of all of the technologies and industries that may be deployed in microgrids – RDEG, storage, inverters, and other components. Instead, it aims to provide a strategic examination of the market for microgrids within the context of the smart grid movement. Navigant Research strives to identify and examine new market segments to aid readers in the development of their business models.

SOURCES AND METHODOLOGY

Navigant Research's industry analysts utilize a variety of research sources in preparing Research Reports. The key component of Navigant Research's analysis is primary research gained from phone and in-person interviews with industry leaders including executives, engineers, and marketing professionals. Analysts are diligent in ensuring that they speak with representatives from every part of the value chain, including but not limited to technology companies, utilities and other service providers, industry associations, government agencies, and the investment community.

Additional analysis includes secondary research conducted by Navigant Research's analysts and its staff of research assistants. Where applicable, all secondary research sources are appropriately cited within this report.

These primary and secondary research sources, combined with the analyst's industry expertise, are synthesized into the qualitative and quantitative analysis presented in Navigant Research's reports. Great care is taken in making sure that all analysis is well-supported by facts, but where the facts are unknown and assumptions must be made, analysts document their assumptions and are prepared to explain their methodology, both within the body of a report and in direct conversations with clients.

Navigant Research is a market research group whose goal is to present an objective, unbiased view of market opportunities within its coverage areas. Navigant Research is not beholden to any special interests and is thus able to offer clear, actionable advice to help clients succeed in the industry, unfettered by technology hype, political agendas, or emotional factors that are inherent in cleantech markets.

NOTES

CAGR refers to compound average annual growth rate, using the formula:

CAGR = (End Year Value ÷ Start Year Value)(1/steps) – 1.

CAGRs presented in the tables are for the entire timeframe in the title. Where data for fewer years are given, the CAGR is for the range presented. Where relevant, CAGRs for shorter timeframes may be given as well.

Figures are based on the best estimates available at the time of calculation. Annual revenues, shipments, and sales are based on end-of-year figures unless otherwise noted. All values are expressed in year 2013 U.S. dollars unless otherwise noted. Percentages may not add up to 100 due to rounding.

Published 4Q 2013

©2013 Navigant Consulting, Inc. 1320 Pearl Street, Suite 300 Boulder, CO 80302 USA Tel: +1.303.997.7609 http://www.navigantresearch.com

This publication is provided by Navigant Research, a part of Navigant Consulting, Inc. ("Navigant"), and has been provided for informational purposes only. This publication is intended for the sole and exclusive use of the original purchaser under terms and conditions agreed to by the parties. This publication may not otherwise be reproduced, recorded, photocopied, distributed, displayed, modified, extracted, accessed, or used without the express written permission of Navigant. Navigant makes no claim to any government data and other data obtained from public sources found in this publication (whether or not the owners of such data are noted in this publication), and makes no express or implied warranty, guaranty, or representation concerning the information contained in this publication, its merchantability, or its fitness for a particular purpose or function. Any reference to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply an endorsement, recommendation, or favoring by Navigant. Navigant does not assume, and hereby disclaims, any liability that may result from any reliance on or use of any information contained in this publication, or for any loss or damage caused by errors or omissions in this publication. If you do not have permission from Navigant covering this publication, please refrain from accessing or using this publication. Please contact Navigant at research-info@navigant.com to obtain permission to use this publication.

©2013 Navigant Consulting, Inc. Notice: No material in this publication may be reproduced, stored in a retrieval system, or transmitted by any means, in whole or in part, without the express written permission of Navigant Consulting, Inc.