

Current Activities of the DOE Office of Clean Coal & Carbon Management

2017 NASEO's National Energy Policy and Program Institute

Joseph Giove III

Director of Coal Business Operations Office of Fossil Energy July 26, 2017

Office of Fossil Energy

National Energy Technology Laboratory

Advancing Clean Coal Technologies

Making Coal Plants More Efficient

Capturing More CO₂

Turning CO₂ into Valuable Products

CO₂ Utilization

Gasification, Advanced Turbines, Advanced Combustion, and Fuel Cells Cost-effective carbon capture for new and existing power plants New pathways to utilize captured CO₂

Safe use and permanent storage of CO₂ from power generation and industry

Bringing it All Together

Crosscutting technology development program

Fossil Energy R&D Program Office		FY 2017 Omnibus		FY 2018 Trump Request		FY 2018 (HEWD) HOUSE		FY 2018 (SEWD) SENATE
Coal		423,800		114,800		440,623		342,054
NETL Coal R&D		370,800 53,000		- 114,800		53,000		342,054 -
Natural Gas Technologies Unconventional Fossil Energy Technologies		43,000 21,000		5,500 15,000		28,200 20,000		45,018 26,319
Special Recruitment Programs		700		200		700		200
Program Direction		60,000		58,478		60,000		57,000
NETL Infrastructure and Operations		40,500		63,100		40,500		58,683
NETL Research and Development		43,000		78,100		44,577		72,663
Fossil Energy R&D Subtotal	\$	632,000	\$	335,178	\$	634,600	\$	601,937
Coal Proviso		50,000		-		-		
Use of Prior Year Balances		(14,000)		(55,178)		-		(29,236)
Rescission of Prior Year Balances		(6,846)		-		-		-
Fossil Energy R&D Total	\$	661,154	\$	280,000	\$	634,600	\$	572,701
Office of Detroloum December								
Stratogic Potroloum Reserves		222.000				252,000		180.000
Strategic Petroleum Reserve - Petroleum Account		-		-		-		-
Northeast Home Heating Oil Reserve		6,500		-		6,500		6,500
Naval Petroleum and Oil Shale Reserves		14,950	_			4,900	_	4,900
Office of Petroleum Reserves Subtotal	\$	244,450	\$	-	\$	263,400	\$	191,400
Use of Prior Year Balances		(4,000)		-		-		-
Rescission of Prior Year Balances		(5,343)		-	_	-		-
Office of Petroleum Reserves Total	\$	235,107	\$	-	\$	263,400	\$	191,400
Office of Fossil Energy Total	Ċ	896 261	Ċ	280 000	Ċ	808 000	Ċ	764 101

Pathway for Technology Commercialization

CCUS Projects Locations, Technology & Cost Share

FE Major Project Demonstrations

Petra Nova – NRG W.A. Parish Advanced Post Combustion CO2 Capture

- Project at NRG's W.A. Parish power plant near Houston
- Retrofit of Existing Coal Plant (Post-Combustion CO2 capture) to process flue gas from W.A. Parish unit 8
- World's largest post-combustion CO₂ capture system
- Project was completed On-Budget and On-Schedule
- Delivering and permanently storing around 1.4 million metric tons of CO₂ per year for EOR.
- 240 MWe slipstream scaled-up to improve project economics
- Fuel: PRB sub-bituminous coal
- 90% CO₂ capture from supplied flue gas (KM CDR Process[®])
- EOR at the Hilcorp West Ranch oil field.
- Total Project Cost: ~\$1 billion (DOE Cost Share: \$190M)
 - NRG Equity \$300 million
 - JX Nippon Equity \$300 million
 - JBIC Project Financing \$250 million

- Project Awarded: May 2010
- Air Permit: December 2012
- NEPA Record of Decision: May 2013
- Financial Close: July 2014
- Complete Construction: December 2016
- Project Construction Completed On-Budget and On-Schedule.
- Started Operations: January 10, 2017
- Project Ribbon cutting: April 13, 2017

Southern - Kemper County Advanced IGCC with CO2 Capture

- Mississippi Power's New Built Coal Plant
- Located In Kemper County, MS
- First Base Load Unit Built in 30 years and Located Away from the Coast after Hurricane Katrina
- Mississippi Power is a PSC Regulated Utility
- Part of Kemper Costs are Subject to PSC Rate Recovery
- Generation: 582 MWe (net) with duct firing
- 2 TRIG[™] gasifiers developed by Southern Co. and KBR
- Fuel: Mississippi lignite
- 67+% CO₂ capture (Selexol[®] process)
- ~3,000,000 metric tons CO₂/year
- EOR: Denbury Onshore LLC
- Total estimated project cost: ~\$7B
- DOE Cost Share: \$407MM U.S. DEPARTMENT OF ENERGY Fossil Energy

- Project Awarded: Jan. 30, 2006
- Project moved to MS: Dec. 5, 2008
- NEPA Record of Decision: Aug. 19, 2010
- Initiate excavation work: Sept. 27, 2010
- CC operation on Nat Gas: August 2014
- First Syngas production initiated: July 14, 2016
- Commercial Operations Expected: 5/30/17

Archer Daniels Midland

CO2 Capture from Biofuel Plant

- CCS project built and operated by Archer Daniels Midland (ADM) at their existing biofuel plant
- located in Decatur, IL
- CO₂ is a direct by-product from production of fuelgrade ethanol via anaerobic fermentation
- Up to 90% CO₂ capture (with >99% CO2 purity), dehydration (via tri-ethylene glycol) & compression
- CO2 Sequestration in Mt. Simon Sandstone deep saline formation.
- Will be the first one to use the new EPA UIC Class
 VI well permit for CO2 capture.
- ~900,000 tonnes CO₂ /year captured and stored
- Total Project Cost: \$208 MM.
- DOE Cost Share: \$141 MM (68%)

- FEED Completed: April 2011
- Construction started: May 2011
- Two monitoring wells drilled: Nov. 2012
- UIC Class VI Injection Well Permit: Sept. 2014;
- Injection well drilled and completed: Sept. 2015
- Construction ~99% complete Apr. 2016
- Awaiting final EPA authorization to start CO2 injections using Class VI UIC permit
- Started Operations: April 7, 2017

Air Products & Chemicals Steam Methane Reforming with CO2 Capture

- Built and operated by Air Products and Chemicals Inc. and located at Valero Oil Refinery in Port Arthur, TX.
- CO2 capture added to 2 existing Steam-Methane Reformers (SMRs) used for Hydrogen Production
- Project achieves 90+% CO₂ capture sing Vacuum Swing Adsorption (VSA) for CO2 separation
- Capturing ~925,000 tonnes CO₂/year
- ~30 MWe cogeneration unit makeup steam to SMRs and power to VSA and Compressors
- CO₂ to Denbury "Green" pipeline for EOR in Texas at West Hastings oil field
- Total Project cost: \$431 MM;
- DOE Share: \$284 MM (66%)
- Project was executed on time and under budget
- Has operated >100% of design when needed

- FEED Completed: April 2011
- Construction started: May 2011
- Two monitoring wells drilled: Nov. 2012
- UIC Class VI Injection Well Permit: Sept. 2014;
- Injection well drilled and completed: Sept. 2015
- Construction ~99% complete Apr. 2016
- Awaiting final EPA authorization to start CO2 injections using Class VI UIC permit
- Started Operations: April 7, 2017

Rare Earth Elements (REEs)

REE's are a family of 17 high-value elements including: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). The rare earths are also often considered to include the metals scandium (Sc) and yttrium (Y).

	в					
	9.000	C	N	ο	F	Ne
	AI	Si	P	s	CI	A
Cu Zn	Ga	Ge	As	Se	Br	Kr
Ag Cd	In	Sn	Sb	Те	I	Xe
Au Hg	TI	Pb	Bi	Ро	At	Rn
			•	•		
	-					
Tb Dy	Но	Er	Tm	Yb	Lu	
vi Pd Pt	Ni Cu Zn Pd Ag Cd Pt Au Hg I I I	Ni Cu Zn Ga Pd Ag Cd In Pt Au Hg TI I I I	AI SI Ni Cu Zn Ga Ge 2d Ag Cd In Sn 2t Au Hg TI Pb 2t Au Hg H Fi 2t Au Hg TI Pb	Al SI P Ni Cu Zn Ga Ge As 2d Ag Cd In Sn Sb 2t Au Hg Tl Pb Bi 2t Au Hg Tl Pb Bi 3d Tb Dy Ho Er Tm	AISIPSNiCuZnGaGeAsSe2dAgCdInSnSbTe2tAuHgTlPbBiPo2tAuHgTlPbBiPo3tTbDyHoErTmYb	AI SI P S CI Ni Cu Zn Ga Ge As Se Br Pd Ag Cd In Sn Sb Te I Pt Au Hg TI Pb Bi Po At Image: Single Constraints Pt Au Hg TI Pb Bi Po At Image: Single Constraints Pt Au Hg TI Pb Bi Po At Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Constraints Image: Single Co

Why are REEs Important?

Light Rare Earths	Major End-Use	
Scandium	TVs, fluorescent and energy-saving lamps	
Lanthanum	hybrid engines, metal alloys	
Cerium	catalysts, metal alloys	
Praseodymium	Magnets	
Neodymium	catalysts, hard drives in laptops, headphones, hybrid engines	
Promethium	watches, pacemakers	
Samarium	Magnets	
Europium	red color for television, computer screens	

Heavy Rare Earths	Major End-Use	
Terbium	phosphors, permanent magnets	
Dysprosium	permanent magnets, hybrid engines	
Erbium	phosphors	
Yttrium	red color, fluorescent lamps, ceramics, metal alloy agent	
Holmium	glass coloring, lasers	
Thulium	medical x-ray units	
Lutetium	petroleum catalysts	
Ytterbium	lasers, steel alloys	
Gadolinium	magnets	

Why are REEs Important?

- The market for REE has been increasing since they were first mined in the mid-1900s. Historically, the U.S. has had a large market share, being the largest producer of REEs from the 1960s to the 1980s.
- China began production in the 1980s and by 1988 secured the position of the world's leading REE producer. China has controlled the global market throughout the majority of the last 30 years
- In 2011, global production of REEs was approximately 132,000 metric tons (MT)—95 percent of which was supplied by China.
- On September 1, 2009, China announced plans to reduce its export quota to 35,000 tons per year in 2010–2015 to conserve scarce resources and protect the environment.
- On October 19, 2010, <u>China Daily</u>, citing an unnamed Ministry of Commerce official, reported that China will "further reduce quotas for rare earth exports by 30 percent at most next year to protect the precious metals from overexploitation"
- In March 2012, the US, EU, and Japan confronted China at WTO about these export and production restrictions. China responded with claims that the restrictions had environmental protection in mind.
- In August 2012, China announced a further 20% reduction in production.

Key Takeaways

- The strong global interest in developing an additional REE supply creates an investment opportunity for commercial firms seeking REEs recovered from coal and coal byproducts to find competitive entry points into the REE global value chain.
- REEs present in coal-based materials currently being mined for coal production represent potential savings when compared to production of virgin ore in a mine dedicated solely to REE recovery.
- The core challenges with REE recovery from coal and coal byproducts center on the large volume of material that must be processed to recover REEs.

Report on Rare Earth Elements from Coal and Coal Byproducts

Report to Congress January 2017

> United States Department of Energy Washington, DC 20585

For Additional Information

Office of Fossil Energy www.energy.gov/fe

twitter.com/fossilenergygov

NETL www.netl.doe.gov

facebook.com/FossilEnergy

