

NASEO-NARUC Grid-Interactive Efficient Buildings (GEB) Working Group April 10, 2019 1:30 pm EDT

Welcome and NASEO-NARUC GEB Working Group

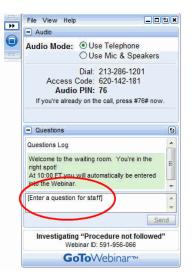
Rodney Sobin, NASEO, Senior Program Director

Grid-Interactive Efficient Buildings Overview

Monica Neukomm, Buildings Technology Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy

Overview of R&D Related to Grid-Interactive Efficient Buildings and Automated Demand Response

Mary Ann Piette, Senior Scientist and Director of the Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory



NASEO Grid-Interactive Efficient Buildings (GEB) Initiative April 10, 2019 1:30 pm EDT

Logistics:

- All attendees are muted.
- Please use the GoToWebinar question box to ask questions.
- Webinar recording and slides will be posted.
 - Access via NASEO webpage (<u>www.naseo.org</u>); go to "EVENTS," then "Past Webinars"

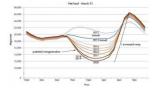
+

NASEO-NARUC Grid-Interactive Efficient Buildings Working Group

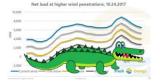
National Association of State Energy Officials

Rodney Sobin Senior Program Director National Association of State Energy Officials

NASEO-NARUC GEB Working Group: GEB and Automated Demand Response Webinar April 10, 2019


- Advancing technologies open opportunities for more flexible building/facility load management:
 - Reduce costs, enhance resilience, reduce emissions
 - Reduce peaks, moderate ramp rates, provide grid services
 - Enhance energy efficiency
 - Integrate distributed and renewable resources

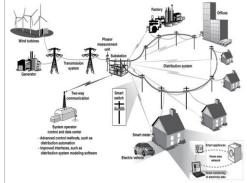
How can we optimize facility interactions with the grid?


How can states fashion policies, programs, and regulations to advance such optimization through GEB?

- NASEO-NARUC GEB Working Group
 - Supported by DOE BTO

- Inform states about GEB technologies and applications
- Identify opportunities and impediments
 - Non-technical and technical
- Identify and express state priorities, concerns, interests
- Recognize temporal and locational value of EE and other DERs
- Enhance energy system reliability, resilience, and affordability

Inform state planning, policy, regulations, and programs


Advance potential roadmaps and pilots

NASEO-NARUC GEB Working Group

- Webinar series—available to all states
- Briefing papers planned
 - Non-technical and technical considerations
- Working Group state engagement
 - State specific calls
 - Topical calls and exchanges
 - Workshop
- Scoping of model GEB road mapping kit
 - Help states to explore GEB in their state contexts
- Scoping potential state pilots
 - Inform development of pilots to explore priority issues

- Potential National Laboratory help for Working Group states
 - Scope potential pilots, roadmaps
 - Outline elements, questions, considerations for GEB pilot projects
 - Support state convenings, research, technical consultations
 - Identify policy and regulatory options to facilitate GEB pilots/demonstration
 - May lead to policy and regulatory pilots
 - May lead to physical pilots/demonstrations

Working Group co-chairs:

- Kaci Radcliffe, Oregon Dept. of Energy
- Hanna Terwilliger, Minnesota PUC staff
- Working Group states:

Colorado Connecticut Florida Hawaii Massachusetts Michigan Minnesota New Jersey New York Oregon South Carolina Tennessee Wisconsin

+ Grid-Interactive Efficient Buildings

Resources

- DOE GEB page <u>https://www.energy.gov/eere/buildings/grid-interactive-efficient-buildings</u>
- 2018 NASEO Annual Meeting (Detroit) <u>https://annualmeeting.naseo.org/agenda</u>
 - Grid-Interactive Efficient Buildings: Energy Efficiency & Grid Optimization David Nemtzow (U.S. DOE)
 - What's Next for Energy Efficiency: Grid Interaction Chris Baker (The Weidt Group)
 - Grid Interactive Efficient Buildings Jan Berman (PG&E)
 - Smart Neighborhood James Leverette (Southern Co.)
- 2019 NASEO Energy Policy Outlook Conference <u>https://energyoutlook.naseo.org/pre-conference-meetings</u>
 - Grid-interactive Efficient Buildings David Nemtzow
 - Buildings-to-Grid: Critical Issues for Decision Makers Natalie Mims Frick

Questions/inquiries:

Rodney Sobin rsobin@naseo.org and Stephen Goss sgoss@naseo.org

Danielle Sass Byrnett dbyrnett@naruc.org

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY


Grid-interactive Efficient Buildings

NASEO-NARUC GEB Working Group

Monica Neukomm Building Technologies Office, DOE www.energy.gov/eere/buildings/geb

Grid-interactive Efficient Building

Key Characteristics of GEB

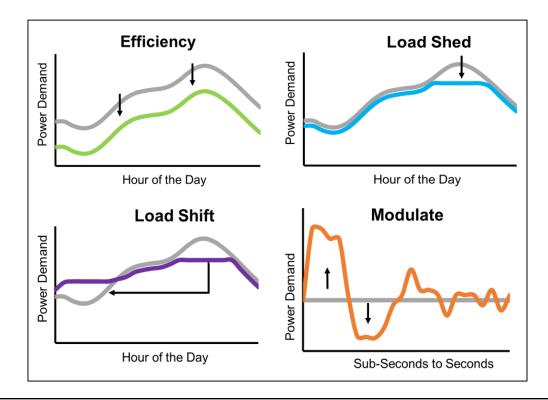
EFFICIENT

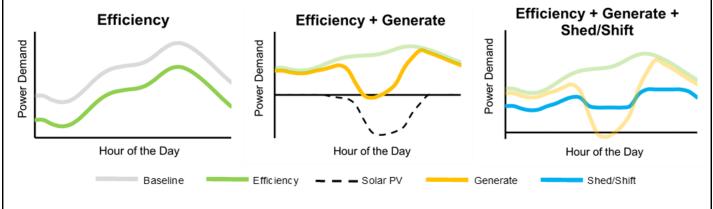
Persistent low energy use minimizes demand on grid resources and infrastructure

CONNECTED

Two-way communication with flexible technologies, the grid, and occupants

SMART


Analytics supported by sensors and controls co-optimize efficiency, flexibility, and occupant preferences



FLEXIBLE

Flexible loads and distributed generation/storage can be used to reduce, shift, or modulate energy use

Demand Flexibility Provided by GEB

Demand Flexibility from a Building Owner's Perspective

Flexibility Mode	Load Change Characteristics	Example Measure	Example Requirements for Grid Services
Efficiency	Install technologies that provide ongoing reduction in the annual energy use	Building has insulated, tight envelope and efficient HVAC system to reduce heating/cooling needs.	The building must sustain reduced energy use, as verified by metered energy use data.
Shed Load	Building reduces demand for a short time period during peak demand or emergency events.	Building dims lighting system by a preset amount in response to grid signals while maintaining occupant visual comfort	To provide contingency reserves, the building must reduce a load within minutes of receiving a signal and may need to sustain load reduction for up to 1 hour.
Shift Load	Building changes the timing of energy use to minimize peak demand/ take advantage of renewable resources.	Connected water heaters pre-heat water during off-peak periods in response to grid signals.	To reduce peak capacity, the building must reduce load within minutes of receiving a signal and sustain for 2-4 hours.
Modulate Load	Building automatically increases /decreases power demand or reactive power in response to signals.	Batteries and inverters autonomously modulate power draw	To provide power support and ramping services, the building must modulate power within seconds/ sub-seconds and receive automatic control signals.
Generate	Building generates electricity to use onsite or to dispatch to the grid.	Rooftop solar PV dispatches electricity to the grid.	To reduce peak, the building must reduce load through generation and/or dispatch excess electricity with minutes of receiving a signal and sustain for 2-4 hours.

Benefits of Demand Flexibility

Benefit	Utility System	Building Owners/Occupa nts	Society
Reduced operation & maintenance costs	\checkmark	-	-
Reduced generation capacity costs	\checkmark	-	-
Reduced energy costs	\checkmark	-	-
Reduced T&D costs	\checkmark	-	-
Reduced T&D losses	\checkmark	-	-
Reduced ancillary services costs	\checkmark	-	-
Increased resilience	\checkmark	\checkmark	\checkmark
Increased DER integration	\checkmark	\checkmark	-
Improved power quality	-	\checkmark	-
Reduced customer utility bills	-	\checkmark	-
Increased customer satisfaction	-	✓	-
Increased customer flexibility and choice	-	\checkmark	-
Environmental benefits	-	-	\checkmark

BTO's grid-interactive efficient buildings portfolio

VALUATION

How do <u>time & the interaction of flexibility</u> <u>options</u> impact value?

Identify values to stakeholders, quantification of national value.

TECHNOLOGY OPTIONS

Which <u>end use technologies</u> provide solutions to specific grid needs?

Prioritize technologies / solutions based on grid services.

OPTIMIZATION

How to while maintaining or improving <u>optimize for flexibility</u> building operation?

Solutions that meet grid operator & building occupant needs.

VALIDATION

Do technologies <u>perform as predicted</u> and meet grid & occupant needs?

Verimention of technologies / strategies, increasing confidence in the value of energy flexibility.

Relevant BTO projects

- Publish report series establishing demand flexibility framework, evaluating technologies and assessing value and performance.
 - GEB Technical Report Series (April August)
 - SEE Action GEB Series (July-November)
- Engage key stakeholder for ongoing feedback
 - ACEEE Utility working group
 - NASEO- NARUC working group
 - Better Buildings Renewable Integration Alliance
- Explore critical elements through numerous research and validation projects
 - GEB Potential Study
 - Metrics Framework
 - Occupant comfort
 - Standardization

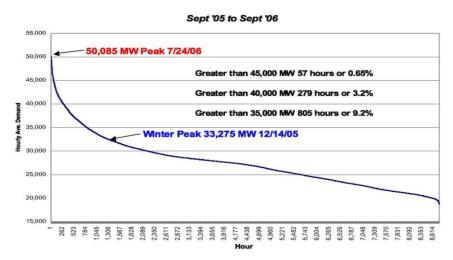
Overview of R&D Related to Grid Interactive Efficient Buildings and Automated Demand Response

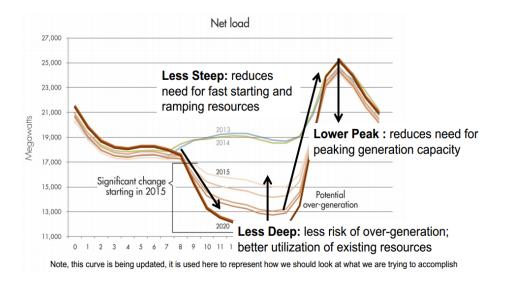
NASEO-NARUC Grid-Interactive Efficient Buildings Working Group

April 10, 2019 – Mary Ann Piette – Lawrence Berkeley National Laboratory

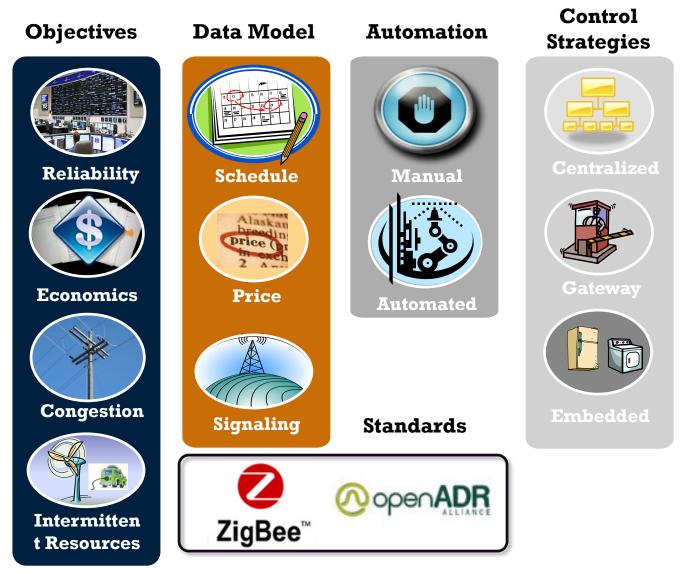
Presentation Outline

- The Need for Grid Services
- Development and Testing of DR Automation
- California DR Potential Study
- New DOE BTO Projects at LBNL
- SEE Action Report State & Local Govt Opportunities for Grid-Interactive Efficient Buildings
- Summary and Future Directions


Challenges with the Grid



California Independent System Operator Corporation


CAISO Load Duration Curve

- Manage Peak
 Capacity During Hot
 Summer Days
- Improve Affordability of Electricity
- Improve Grid
 Reliability
- Enable More
 Renewables on Grid

Motivation and Framework for Grid Services

4/10/2019

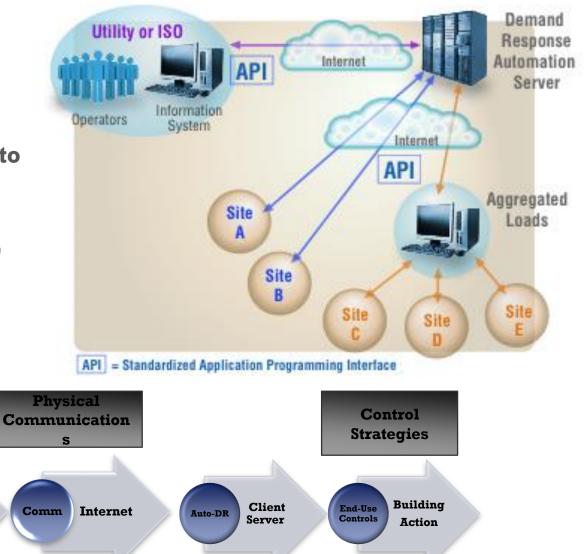
Open Automated Demand Response

- Open standardized DR interface
- Allows elec providers to communicate DR signals to customers
- Uses XML language and existing communications, Internet

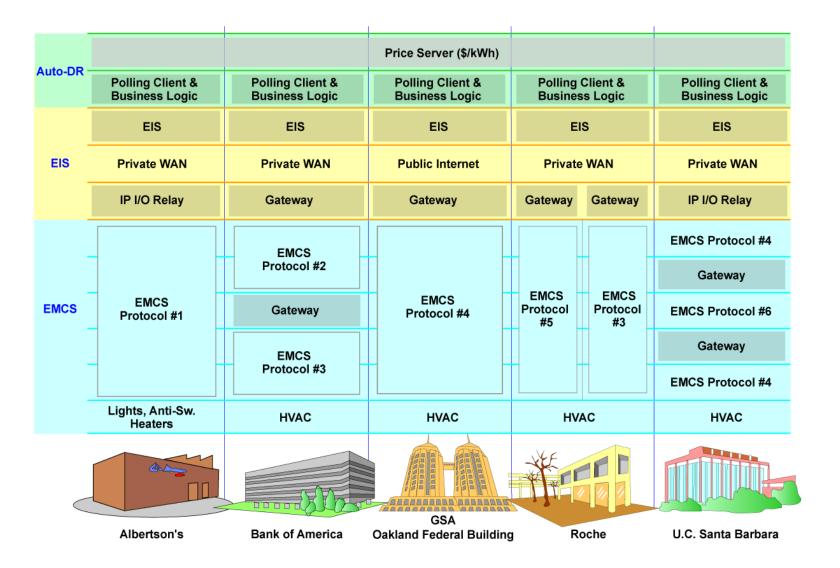
Data

Model OpenADR

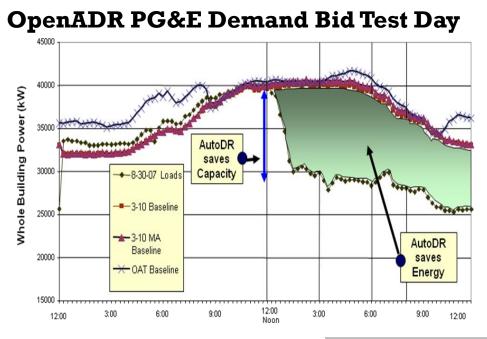
Pricing

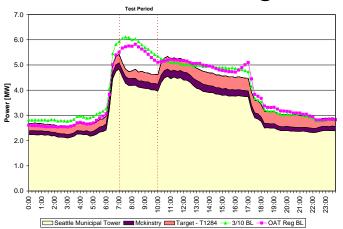

Data Models

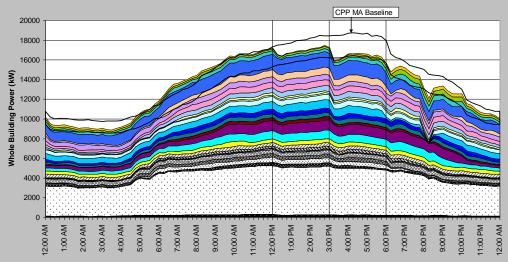
\$/kW

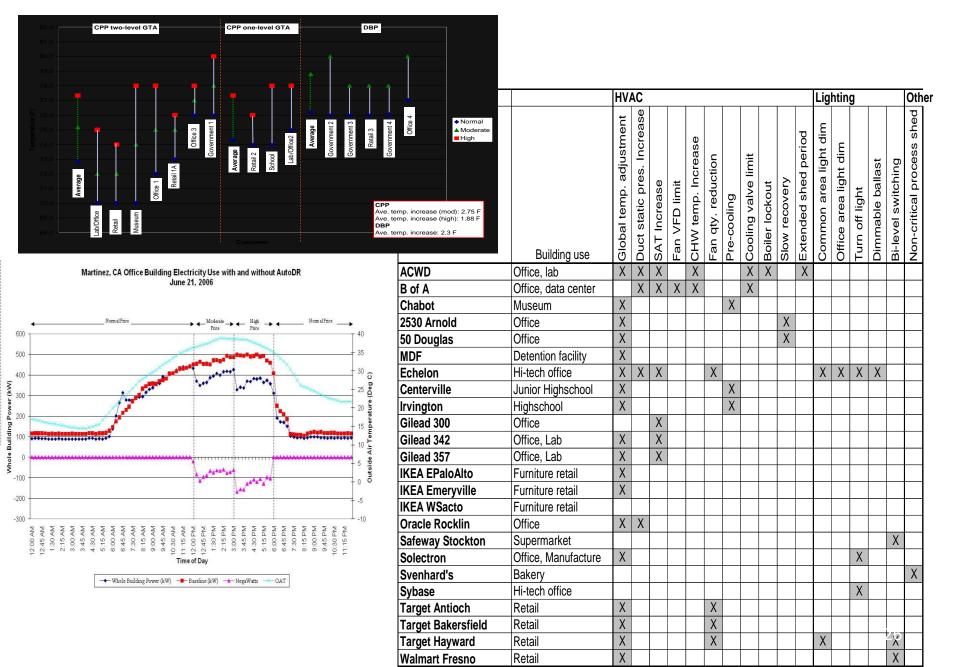

h

Price


Signal


First 5 Auto-DR Tests - 2003


Historic focus on Seasonal Grid Stress


OpenADR Northwest Test on Cold Morning

OpenADR Cumulative Shed

Control Strategies Evaluated in Previous Demos

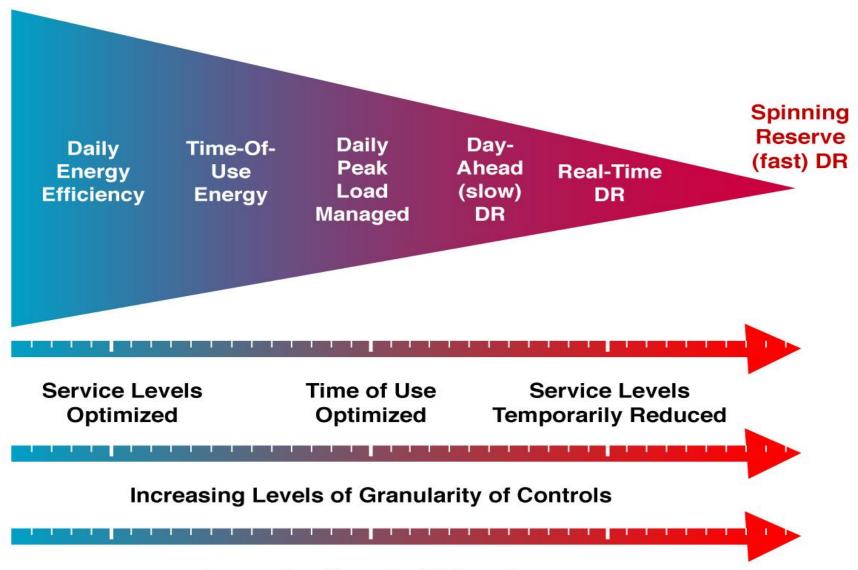
Demand Shifting with Thermal Mass

- Goal evaluate demand shifting with mass
- Past Work –commercial building field studies
- Results –2003 Santa Rosa demo shifted afternoon chiller power $(2 W/ft^2)$

Thermal Capacity ~ 3 Watts-Hours/ft³ - F

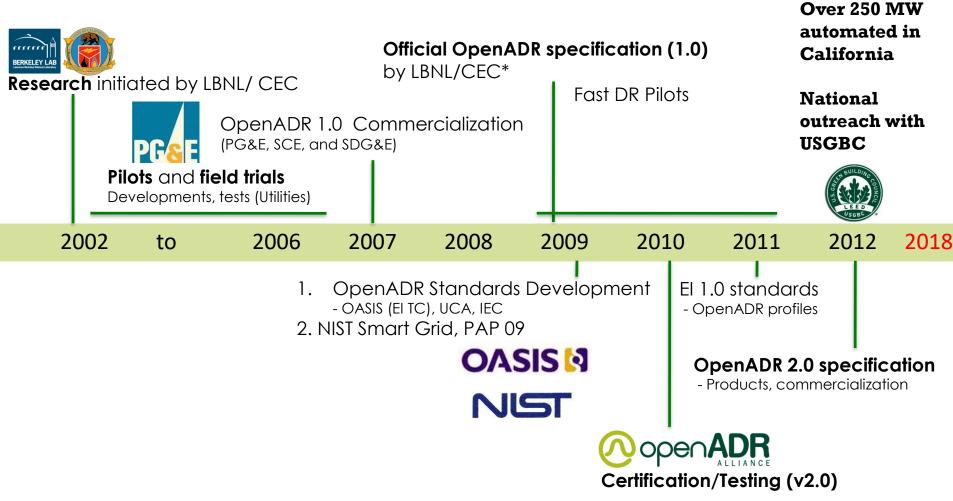
WARM, COOL, OR UST RIGHT?

Dear Customers.


We are testing a new heating and cooling system that could help reduce pressure on California's electricity grid. Please let us know what you think about the temperature in this store.

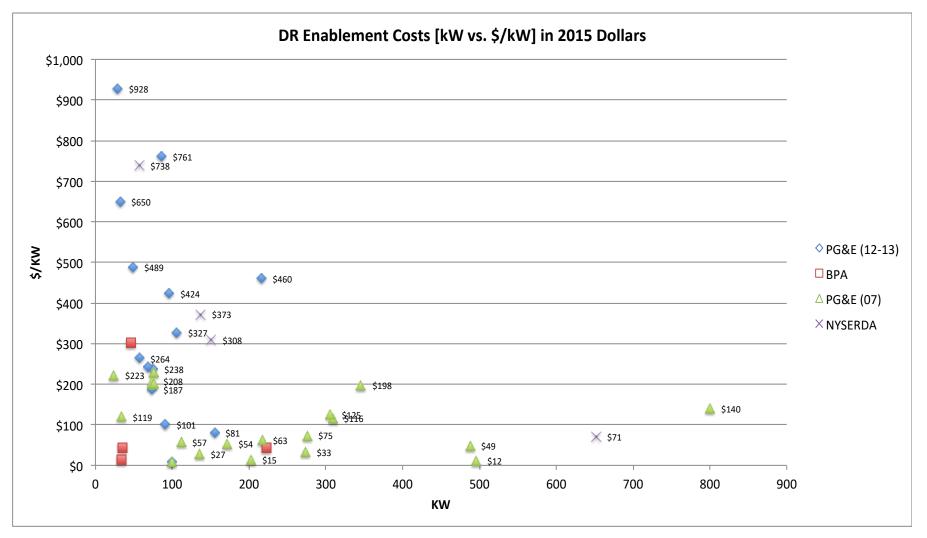
The temperature in the store right now is:

- Too warm! It bothers me.
- Warm, but it doesn't bother me.
- Just right.
- Cool, but it doesn't bother me.
- Too cool! It bothers me.


For more information visit www.cbe.berkeley.edu/power

Linking Energy Efficiency and DR

Increasing Speed of Telemetry

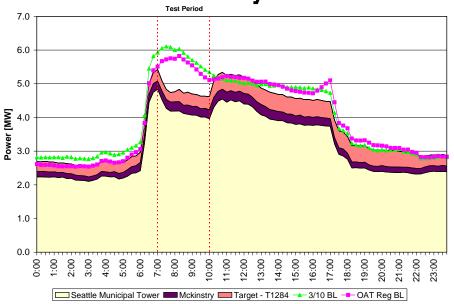

History of OpenADR

Chinese Standard Based on OpenADR Published in 2017

International Electrotechnical Committee – Nov 2018 - IEC TR 62746-2:2015 Systems interface between customer energy and power management system

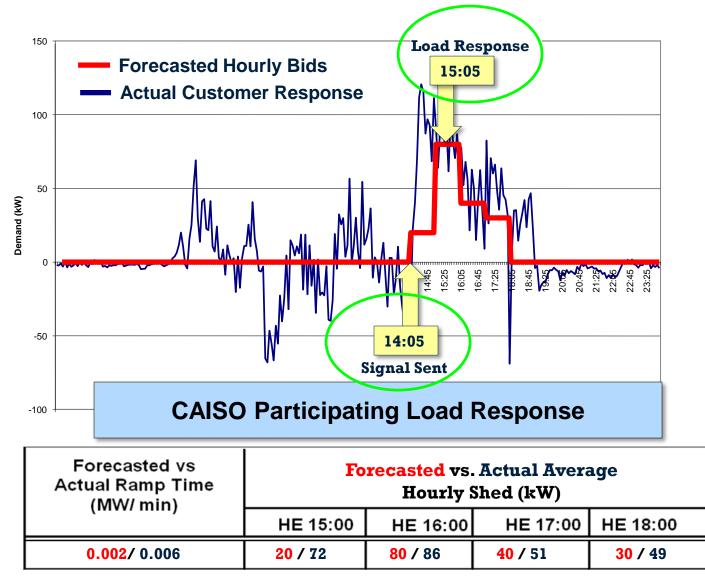
Cost to Automate DR vs Power Reduction

Note- Some projects include efficiency technology and not just DR systems

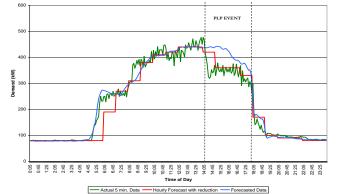

+ PG&E EE-DR Measures in 2012-2013

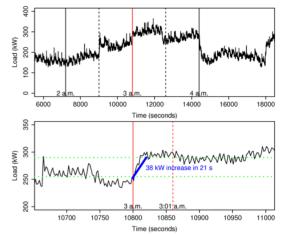
Facility	DR kW	Project Cost (\$k)	ADR Incentive (\$k)	Ratio of DR Incentive to project cost	\$/kW	Measures	Options
College	57	16	20	1.00	288	EMS, duty cycles	EE&DR
Restaurant and Bar	75	29	26	0.90	389	EMS, duty cycles	EE&DR
Hotel	32	34	6	0.19	1063	Shut off ancillary plug load	EE&DR
Hotel	69	27	14	0.51	396	Shut off ancillary plug loads	EE&DR
Big Box	2003	721	701	0.97	360	EMS, duty cycles	EE&DR
Office	264	2,032	94	0.05	7698	Duty cycles, turn off & dim lights, reset temp setpoints	EE&DR
Cinema	49	26	17	0.66	533	EMS, duty cycles	EE&DR
Shopping Mall	106	37	37	0.98	357	EMS, duty cycles	EE&DR
Office	216	163	77	0.46	753	EMS, duty cycles	EE&DR
Office	86	107	30	0.28	1246	EMS, duty cycles	EE&DR
Family Bowl	32	11	11	0.98	356	EMS, duty cycles	EE&DR

5 Grid Service Studies Beyond Hot Summer Days

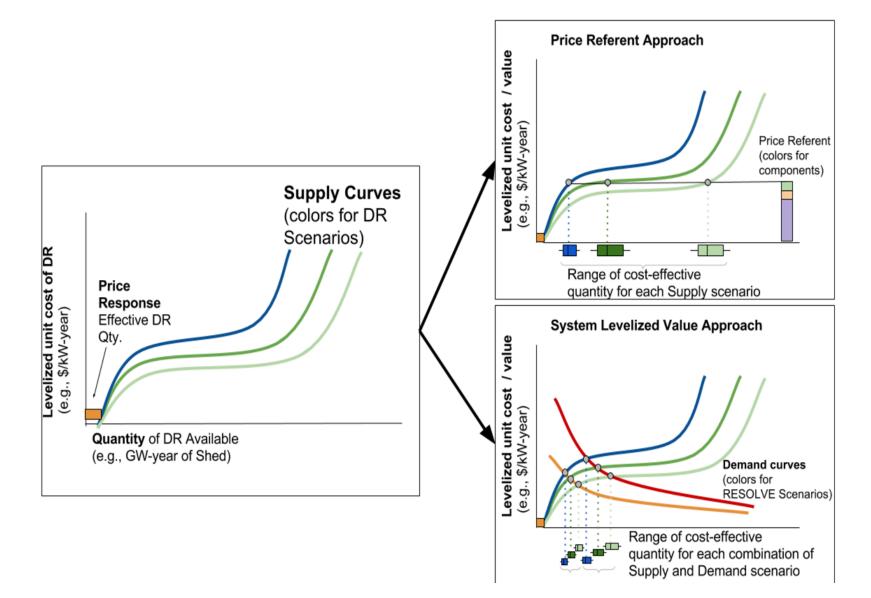

- Cold mornings for winter peak regions (Seattle)
- Non-spin reserve ancillary services (No. Cal)
- **Regulation ancillary services (No. Cal)**
- Economic dispatch integrated price signals (NY NY)

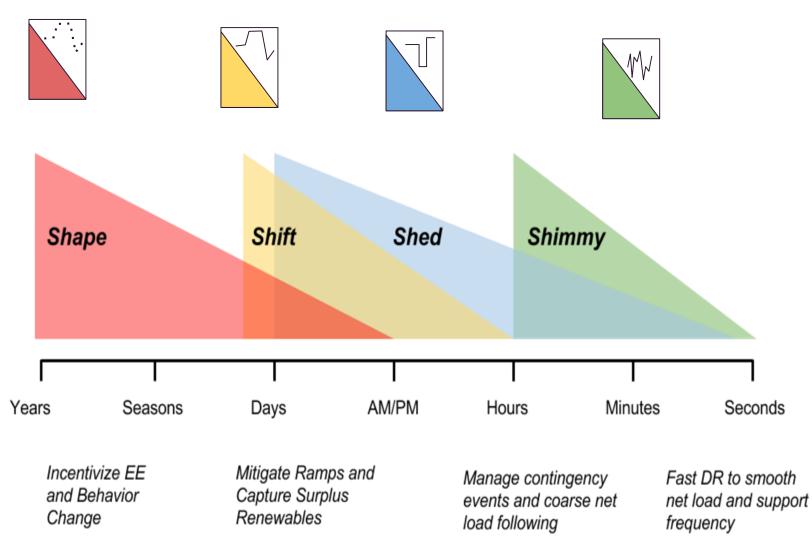
• Fast telemetry for small commercial (No. Cal.)


				ł	IVA	С									Li	ghti	ng		C	Othe	r
Site	Global temp. adjustment	Duct static pres. decrease	SAT decrease	Fan VFD limit	RTU Shut off	Duty Cycling RTUs	Pre-heating	Pre-cooling	Fan-coil unit off	Cycle electric heaters	Cycle AHU Fans	Cycle VAVs	Set up CO2 Setpoints	Common area light dim	Office area light dim	Turn off light	Dimmable ballast	Bi-level switching	Non-critical process shed	Elevator cycling	Slow Recovery
McKinstry	S					W		S								S					W
Target - T1284	WS				WS													WS			
Seattle Municiple Tower	WS										W	W									W
Seattle University	WS					W	W	S		W	W	W	W								٧


OpenADR with Ancillary Services

Fast DR in Commercial Buildings

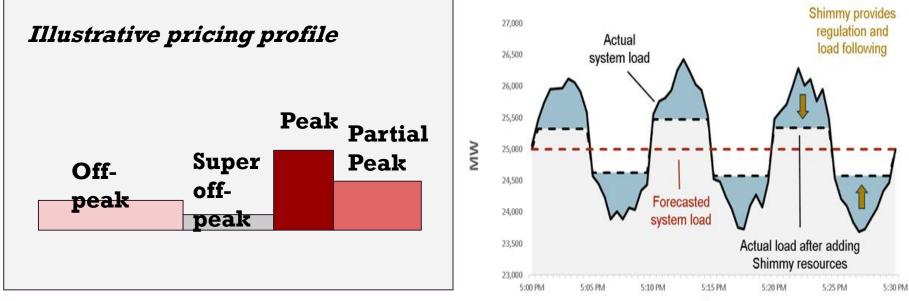

- Buildings can provide ramping
- Costs will be lower if used in many DR programs
- How often can load be called?



Site	Available Capacity (MW)	Min. Operating Limit (MW)	Max. Operating Limit (MW)	Ramp Rate (MW/min.)
UC Merced	0.16	0	0.17	Reg up: 0.022
OC WIEICEU	0.10	0	0.17	Reg down: 0.022
West Hill Farms	0.03	0	0.16	Reg up/down:0.03
				Reg up: 0.05
SMCC	0.2	0	0.2	Reg down_1: 0.066
				Reg down_2: 0.134

California DR Potential Study - 2 Reference Methods

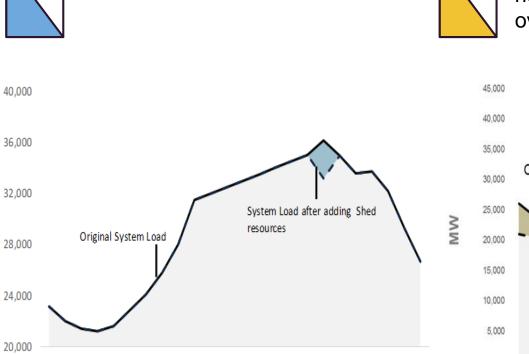
California DR Potential Study Evaluated Four DR Grid Needs


Shape and Shimmy

Shape Service Type as modeled: Accomplishes Shed & Shift with prices & behavioral DR.

Shimmy Service Type: Load Following & Regulation DR

Time



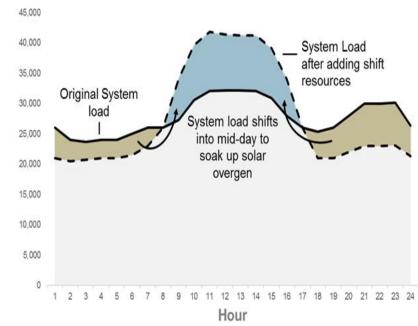
Shed and Shift

MM

1 2

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Shed Service Type: Peak Shed DR


Hour of Day

8 9

6

Shift Service Type: Shifting load from hour to hour to alleviate curtailment/ overgeneration

Methodology

<u>LBNL-Load</u> - IOU-provided load (~220,000 customers) & demographic data (~11 million customers) in 3,500 "clusters," based on similarities. Load profiles for total & end use-specific clusters. Forecasts to 2025.

<u>DR-Path</u> - DR pathways based on load shape and forecasts from LBNL-Load. Pathways represent future DR supply potential, given assumptions on technology adoption, participation & cost for existing & emerging technologies.

<u>E3's Renewable Energy Solutions (RESOLVE)</u> estimates set of benchmarks for each DR type based on avoided investment & operation costs when DR is available. Evaluated for low & high renewable energy curtailment levels.

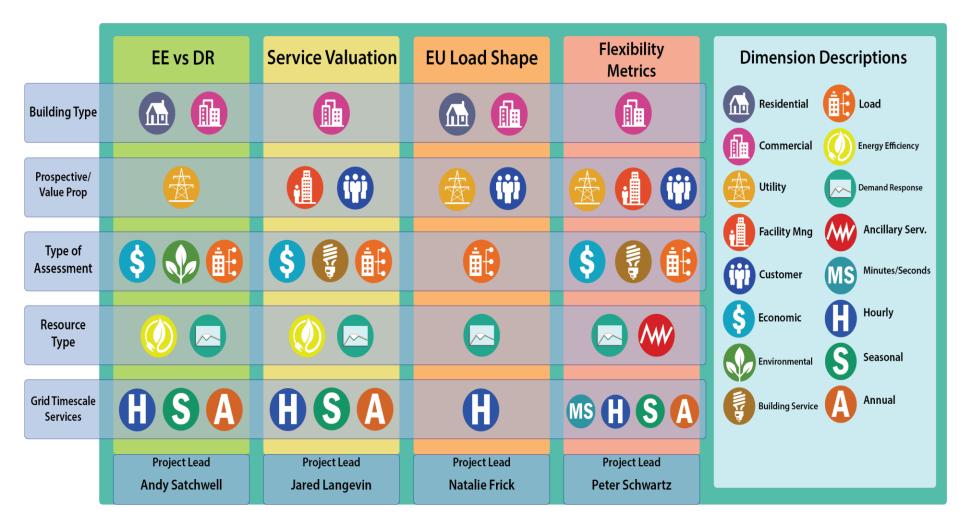
End Uses and Enabling Technologies

Sector	End Use	Enabling Technology Summary
All	Battery-electric and plug-in hybrid vehicles	Level 1 and Level 2 charging interruption
	Behind-the-meter batteries	Automated DR (Auto-DR)
Residential	Air conditioning	Direct load control (DLC) and Smart communicating thermostats (Smart T-Stats)
	Pool pumps	DLC
	HVAC	Depending on site size, energy management system Auto-DR, DLC, and/or Smart T-Stats
Commercial	Lighting	A range of luminaire-level, zonal and standard control options
	Refrigerated warehouses	Auto-DR
	Processes and large facilities	Automated and manual load shedding and process interruption
Industrial	Agricultural pumping	Manual, DLC, and Auto-DR
mustia	Data centers	Manual DR
	Wastewater treatment and pumping	Automated and manual DR

Phase 2 DR Quantity Findings: By 2025, Medium DR Scenario Suggests...

Shape: Conventional TOU / CPP rates effectively provide <u>1 GW</u> <u>Shed & 2 GWh Shift</u> at ~zero cost. Deeper potential?

Shed: Generation overbuild means ~zero need for system-level shed, but <u>2-10 GW</u> in cost-effective local Shed & distribution system service.



Shift: <u>10-20 GWh</u> of cost-effective daily Shift (2-5% of daily load), with opportunity for system value at ~\$200-500+M/year.

Shimmy: <u>300 MW</u> Load-following & <u>300 MW</u> Regulation*.* Opportunity for system-level total value is ~\$25 M/year.

New LBNL BTO GEB Projects

Report series underway to address key state and local government opportunities for Grid-Interactive Efficient Buildings

In partnership with

Lawrence Berkeley National Lab

About SEE Action

- Professional network of state and local governments and their stakeholders, energy experts and industry representatives
- Facilitated by the US DOE Office of Energy Efficiency and Renewable Energy, Office of Electricity, and US EPA Climate Protection Partnerships Division

www.seeaction.energy.gov

Introduction

• Key technology trends

2

3

- Value proposition for grid & customers
- Critical actors and their emerging opportunities

Assessing Value

- Valuing demand flexibility
- Methods to determine economic value of services provided by GEBs
- Implementation considerations

Assessing Performance

- Audiences/needs for performance data
- Practices and protocols, data and analytical tools that are needed
- Putting assessments into practice

Other reports TBD

Summary and Future Directions

- Demonstrated capability of building end-uses to provide grid services
- Research needed on
 - modeling and capabilities
 - field measurement
 - cost-benefits
 - commissioning, controls, automation, interoperability
 - persistence of savings
- Linking efficiency and DR is synergistic in many cases

