

DOE's Focus on Energy Efficient Mobility Systems

Mark Smith
Vehicle Technologies Office

NASEO Smart Mobility Webinar
October 30, 2017

MOBILITY IS FOUNDATIONAL TO OUR WAY OF LIFE

CONVERGING TRENDS ARE SHAPING MOBILITY

Population

Northern Bangs Rectitions Continues Trices Trices

75% of population in 11 Megaregions.

Population expected to grow by 70 million in next 30 years.

Demographics

Americans are Living Longer

By 2045, the number of Americans over age 65 will increase by **77%**. About **one-third** have a disability that limits mobility.

Millennials are Connected & Influential

There are 73 million Americans aged 18 to 34, and they drove 20% fewer miles in 2010 than at the start of the decade.

Technology

Integration of Connected & Automated Vehicles

Introduction of Shared Service Platforms

Advancements in Vehicle Powertrain Technology

Deeper Application of Big Data

Faster Processing Speeds at Decreasing Cost

TRENDS ARE CAUSING A FUNDAMENTAL DISRUPTION

Ride-hailing

Industry is leading the introduction of disruptive business models & technologies.

DOE must understand:

- How will this disruption lead to new energy efficiency opportunities?
- What are the risks to energy use and how can we overcome them?
- What are the most promising innovation levers for energy efficiency?

Automation

Car-sharing

New Modes

FUNDAMENTAL DISRUPTION, DRAMATIC ENERGY IMPACTS

VTO EXPANDING FOCUS TO TRANSPORTATION LEVEL

Component

Vehicle

Transportation System

EERE'S VEHICLE TECHNOLOGIES OFFICE (VTO)

VTO develops advanced transportation technologies that:

- ✓ Improve energy efficiency
- ✓ Increase domestic energy security
- Reduce operating cost for consumers & business
- ✓ Improve global competitiveness of US economy

ENERGY EFFICIENT MOBILITY SYSTEMS (EEMS) ACTIVITIES

SMART Mobility Lab Consortium

High-Performance Computing / Big Data Analytics

Advanced R&D Projects

Core VTO
Evaluation &
Simulation Tools

SMART MOBILITY LAB CONSORTIUM

Multi-Lab Consortium creating new knowledge and understanding about the energy implications and opportunities from future mobility.

- Connected & Automated Vehicles
- Urban Science
- Mobility Decision Science
- Advanced Fueling Infrastructure
- Multi-modal Transport

Quantifying energy savings potential of vehicle connectivity and automation in merging roadway scenario (ORNL).

Analyzing regional energy impacts of autonomous driving in Chicago metropolitan area using agent-based transportation simulation (ANL).

Modeling charging requirements for electrified shared mobility service fleets using spatially-resolved vehicle activity patterns (INL/NREL).

Quantifying the energy benefits of CAVenabled drive smoothing for multiple powertrain technologies (ANL).

HPC / BIG DATA ANALYTICS

Develop and apply national lab expertise in high-performance computing, machine-learning, and big data science to find solutions to real-world transportation energy challenges.

- HPC4Mobility: Small seedling projects to partner specific national lab high-performance computing expertise and resources with cities to create solutions for transportation planning.
 - EXAMPLE: Large-scale simulation to improve metropolitan transportation system design
- Big Transportation Data Analytics: National-lab based data-science projects to apply artificial intelligence techniques to emerging large/complex transportation data sets.
 - EXAMPLE: Spatio-temporal deeplearning for mobility applications

ADVANCED R&D PROJECTS

Partner with industry and academia to research and develop mobility technology solutions that lead to energy efficiency savings.

Solutions may include:

- Hardware devices
- Software solutions
- Control systems
- Advanced sensors
- Powertrain components

Develop an adaptive spatio-temporal intersection control system that reduces fuel use by ~15% while improving travel time (University of Michigan).

Create anticipative/collaborative vehicle control software using connectivity & automation, and demonstrate energy savings through closed-track vehicle-in-the-loop testing (Clemson University).

LIVING LABS

Work with cities and stakeholders for field evaluations and to collect data as new mobility systems are deployed.

- Provides important feedback mechanism to R&D
- Real-world data to test, validate and improve models, simulations, software and hardware
- Understand key energy metrics

<u>Energy Efficient Logistics</u> – Rensselaer Polytechnic Institute

- NYC Albany Corridor
- Uses Freight Demand Management to manage freight patterns so as to reduce energy use and support energy-efficient goods movement

Evaluating Smart, Shared, and Sustainable Mobility Services – City of Seattle

 Evaluating technical acceptability of electrification in shared mobility applications in four major U.S. markets

MEMORANDUM OF UNDERSTANDING WITH DOT

MOU signed between DOT/OSTR-R and DOE/EERE to:

- Pursue key collaborative opportunities to accelerate innovative "smart" transportation systems research, development, demonstration, and deployment
- Recognize mutual interest in the economic, environmental, and national security benefits of smart transportation technologies

GOALS

- Gain mutual benefit from coordination between DOT's Smart City Challenge and VTO's SMART Mobility Lab Consortium.
- Provide leadership and best practices in the development and analysis of transportation data management.
- Leverage DOE's expertise in transportation electrification R&D.
- Leverage DOT's experience with connected and automated vehicles.
- Utilize and share existing stakeholder networks for institutional knowledge of local resources.
- Support a Technologist-in-Cities pilot, embedding a mobility energy expert within a Smart City.

CONCLUSION

- Major disruption occurring in transportation
- Connected & Autonomous
 Vehicles (CAVs) are coming
- CAVs & Shared Mobility have dramatic implications for energy use
- DOE must understand energy impacts and develop solutions to enable energy efficiency in transportation

A Maximum-Mobility, Minimum-Energy Future

Mark Smith
Sarah Olexsak
U.S. Department of Energy
Vehicle Technologies Office
Mark.smith@ee.doe.gov
Sarah.olexsak@ee.doe.gov

